Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a versatile platform for fabricating two‐photon excitable carbon dot‐based nanocomposite thin films by harnessing the structural versatility of polymer brushes in combination with electron‐beam lithography (EBL). This approach enables the precise spatial organization of carbon dots (CDs) at the nanoscale, facilitating dynamic modulation of their photoluminescent properties in response to environmental stimuli. Three model systems were examined, incorporating pH‐ and thermally responsive polymers, functionalized through covalent and dynamic covalent bonding strategies. By leveraging the spatial control afforded by nanostructured polymer brushes, we achieved precise tuning of optical properties while mitigating aggregation‐induced quenching, a longstanding challenge in solid‐state CD applications. In addition to the advances in controlling optical properties, this work highlights the potential of polymer brush systems to function as optically active, reprogrammable surfaces. The resulting nanoscale‐engineered materials exhibit highly responsive, reconfigurable photonic behavior, offering a scalable pathway for integrating advanced optical interfaces into microchip technologies, biosensing platforms, and multiplexed diagnostic systems. The fusion of polymer brushes, carbon dots, and advanced lithographic techniques marks a substantial advancement in the development of functional materials with nanoscale precision and stimuli‐responsive properties.more » « less
-
Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface-based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto-fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose-responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non-patterned substrates. Two-photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto-fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.more » « less
-
Abstract Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface‐based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto‐fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose‐responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non‐patterned substrates. Two‐photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto‐fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.more » « less
-
Abstract A new type of a positive tone chemically amplified photoresist based on well‐defined, sequence‐controlled polypeptoids with ten repeat‐units are synthesized and their potential for extreme‐UV lithography (EUVL) is demonstrated, resulting in line‐space patterns of 70 nm pitch. The synthesized samples contain 4‐(ethyl) phenol (Eph) and propyne (Ppy) side chains, while their change in solubility upon exposure is induced by the deprotection of 4‐(ethyl) phenol side groups. The resist performance is evaluated using deep UV and extreme‐UV lithography. While all samples are developable in isopropyl alcohol, the content, and the sequence of hydrophobic alkyne side chains lead to a detectable change in solubility, dissolution rate, and resist performance.more » « less
-
Flexible biocompatible electronic systems that leverage key materials and manufacturing techniques associated with the consumer electronics industry have potential for broad applications in biomedicine and biological research. This study reports scalable approaches to technologies of this type, where thin microscale device components integrate onto flexible polymer substrates in interconnected arrays to provide multimodal, high performance operational capabilities as intimately coupled biointerfaces. Specificially, the material options and engineering schemes summarized here serve as foundations for diverse, heterogeneously integrated systems. Scaled examples incorporate >32,000 silicon microdie and inorganic microscale light-emitting diodes derived from wafer sources distributed at variable pitch spacings and fill factors across large areas on polymer films, at full organ-scale dimensions such as human brain, over ∼150 cm 2 . In vitro studies and accelerated testing in simulated biofluids, together with theoretical simulations of underlying processes, yield quantitative insights into the key materials aspects. The results suggest an ability of these systems to operate in a biologically safe, stable fashion with projected lifetimes of several decades without leakage currents or reductions in performance. The versatility of these combined concepts suggests applicability to many classes of biointegrated semiconductor devices.more » « less
An official website of the United States government
